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A T H E R M A L  P R O B L E M  O F  F R I C T I O N  F O R  

A H A L F - S P A C E  W I T H  A C R A C K  

A. A. Evtushenko and V. M. Zelenyak UDC 539.3 

We investigate the effect of  local frictional heating of  the surface of  a half-space on the stress intensity factors 

at the vertices of  a surface cut. 

1. Introduction. Sliding or rolling contact is often accompanied by fatigue failure of the bodies as a result 

of nucleation and subsequent propagation of surface cracks [1 ]. The loading on such a contact consists of two parts: 

mechanical, caused by contact pressure, and thermal, caused by a heat flux due to frictional heat generation. 

Solutions of plane isothermal contact problems for a half-space with a crack were obtained in [2-6 ]. We construct 

a solution of a corresponding thermal problem of friction. 

According to investigations [7, 8 ], the thermal problem of friction is reduced to determination of the 

temperature field and of the stressed state induced by it in the body when a portion of its boundary surface (the 
area of contact) is heated by a distributed heat flux with an intensity q proportional to the specific work of friction. 

This work, with account for the Amonton law for the coupling of tangential and normal stresses [9 ], is determined 

as the product of the friction coefficient f, the slip velocity V, and the contact pressure p. In turn, the distribution 

of the contact pressure is considered to be known and is taken from the solution of the corresponding isothermal 

contact problem. The contact-pressure distribution most often used is constant or elliptic, in accordance with the 

Herz formulas [1 ]. 
2. Statement of the Problem. Suppose an elastic heat-conducting half-space with an arbitrarily located 

internal crack (cut) of length 21 is heated on a finite portion of its surface of width 2a by a linear heat flux of 

constant intensity: 

q = u [ V p .  (1) 

The surface of the half-space outside the strip of heating and the sides of the crack are thermally insulated and 

are free from external effects. We consider the problem within the framework of plane deformation for an estab- 

lished temperature state. We do not take into account possible contact between the sides of the crack. 

We refer the half-space to the rectangular coordinate system Oxy so that the x axis is located on the surface 

and the center of the crack is located at the point Ol (0, - h )  on the y axis, whose positive direction coincides with 

the external normal to the free surface at the point O. Moreover, we introduce the local coordinate system OlXlY 1, 

whose Xl axis is directed along the line of the cut and forms an angle w with the Ox axis (Fig. 1). The connection 

between these coordinate systems gives the relation 

z I = (z + /h) exp ( -  ko), (2) 

w h e r e z = x + i y ; z  l = x l  + iyl. 
The center of the heating area, located a distance d from the y axis, is connected with the rectangular 

coordinate system O'x'y', where x' = x + d, y' = y (Fig. 1). 
3. Heat-Conduction Problem. We represent the temperature T(x,  y) of the half-space with the cut as the 

sum of the temperature To(x, y) of the solid half-space (the basic temperature field) and the temperature T*(x, y) 

perturbed by the presence of the cut. 
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Fig. 1. Scheme of the problem and system of coordinates. 

The  stat ionary temperature developed in the solid half-space by heating the portion I x'l < a of the surface 

y' = 0 by the linear heat flux (1) is equal to 

[ 
r o (x, y) = ~ l ( x  + d - a) In ~/(x + a - a) z + y2 _ (x + d + a) x 

x Inx/(x+d+a)2+y2 +y[arctan ( .x+d-a)y -arctan (x+d+a)]y + 2 a } + c .  (3) 

where c is an arbi trary constant. 
The  per turbed temperature T* will be found in the form T*(x, y) = Re O(z) using the holomorphic function 

O(z), which in turn is associated with the jump y(xO in the temperature on the axis of the cut by  the relation 

o+ 1] = - -  Y (tl) d t l ,  ~1 = t l e x p ( / t o ) - i h "  
~ t  - l  T 1 - -  z Y I  - -  z 

Here  and below, the prime and the overbar denote a derivative and a conjugate quantity,  respectively. The  unknown 
temperature jump y(xl)  is found from the solution of the singular integral equation [10] 

1 �9 l - - - L - -  + L (q ,  Xl) )t (ll) dt I = F (xl), I xl l  < l ,  (4) 
- l  t l  - -  X l  

where 

L ( t l ,  xl)  = R e  [exp( /m) / (~  1 - T l ) ] ,  ~1 = X l  e x p ( / o g ) - i h ;  

e (xl) = 
07" 0 (x, y) 

OYl 
Yl = 0  

OT 0 (x, y)[ 
�9 = - -  COS to  s i n  to Ox Y l  = 0  

07" 0 (x, Y)t 
Oy Yl =o" 

Taking into consideration the connection (2), from expression (3) for the basic temperature  field T0(x, y) 

we find 

OTo(x,Y) I q [ 
OX Yl =0 -- z~K In X/(x I cos to + d - a) 2 - (x 1 sin to - h) 2 - 

- l n x / ( x  l c o s t o  + d +  a) 2 +  (x l s i n t o - h ) x j  , 
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Fig. 2. Dependence of the dimensionless SIF k~* (I) and k~-* (II) (solid 
curves) and kl* (I) and k2* (II) (dashed curves) on the angle of orientation 
of the crack to in the case of symmetric (d* = 0) heating for a* = 0.25,/* = 0.5 

(1), 0.25 and 0.9 (2), 1.5 and 0.5 (3), 1.5 and 0.9 (4). 

OTo(x'Y)] q [ X l C ~  
Oy Yl =o = ~rK arctan x I sin co - h - arctan 

x I cos w + d + a]  

j x I s i n  t o  h " 

The solution of integral equation (4) must additionally satisfy the condition of continuity of the temperature 
7"* when going around the contour of the crack: 

l 
f y ' ( q )  dt 1 = O. (5) 
-1  

4. Temperature Stresses. Since the temperature field T0(x, y) of (4) does not cause stresses in the solid 

half-space, we find the stresses that are initiated by the perturbed temperature T*(x, y). The singular integral 
equation of the corresponding problem of thermoelasticity has the form [10 ] 

l 

f [M (tl, Xl) G (tl) + N (t 1, X l )  G ( l l )  ] dtl = 0 ,  I Xl I < l ,  (6) 
- l  

where 

l 
M (tl, X l )  = - -  

t I - -  X 1 

_1+ exp ( -  2 ~ )  
+ (~1 - q )  (~1 - r l )  z 

N( t l ,  x l ) - - -  

+ exp (~o) I 1 + exp ( -  2 ~ )  + 

2 l~1 ~'1 ~1 - -  "fl 

exp (-  _2~_.) (fi__]l - q)] } 
+ ( ~  _ q ) 3  ; 

exp (/w) [ ~1 - "~1 1 

2 ( ~ l  - -  ~1)  2 ~1 - -  I ' l  

exp (--2/w) (~__L - rl)] . 
(tl - q)z ] 

a ( q )  = g' ( q )  + i /~ ,  (t) ; ~ = ,~,. (1 + v ) / ( 1  - v) ; 

g(q) is the jump of normal (in the direction of the Yl axis) displacements when passing over the line of the crack. 
Uniqueness of these displacements in passing around the contour of the crack is ensured by satisfaction of the 

condition 
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Fig. 3. Dependence  of the dimensionless SIF k~* (I) and  k~-* (II) (solid 

curves) and k~-* (I) and k2* (II) (dashed curves) on the angle of or ientat ion 

of the crack co in the case of asymmetric (d* = 1) heating for a* -- 0.25 and 

/* = 0.5 (1), 0.9 (2). 
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Fig. 4. Dependence of the angle of orientation of the crack to* at which k~* = 

0, i = 1, 2, on the parameter  d* for /*  = 0.5 and a* -- 0.25 (1), 0.5 (2), 1 (3). 

l l 
f G (tl) d t  1 = - ifl f t I 7 '  (tl) d t l .  (7) 
- l  - l  

5. Numerical  Analysis. The  algorithm of the solution of the problem considered consists in the following: 

from integral equation (4), with condition (5) being satisfied, we find the derivative of the tempera ture  jump y ' ( t l ) ,  

using which we solve the system of integral equations (6) and  (7) for the function G(t l ) ;  using the formula 

�9 4-  -4- 

k'~ - i k ~  = "oF lim ~/2~ It I q= II G (q )  
tl-~ +_l 

we determine the stress intensi ty factors (SIF) k~, i -- 1, 2 at the vertices x I = •  of the crack. 

The  solution of the singular integral equations of the first kind (4), (6) with a singular Cauchy kernel  in 

the class of functions of index 1 (i.e., ones possessing a root singularity at the ends •  of the integrat ion interval) 

was obtained numerical ly by the method of mechanical quadratures  [11 ]. Th e  dimensionless half-width of the 

region of frictional heat ing a* = a / h ,  displacement of the center  of this region d* = d / h ,  and  half- length of the cut 

l* = l / h  are the independent  input parameters  of the problem. To attain a relative accuracy of the calculations of 
-4- 

1%, not more than 20 collocation points were needed.  Results for the dimensionless SIF k ~ *  = k72Jr.K/qfl lv '-~-l ,  i 
+ *  

= 1, 2, are presented in Figs. 2-5. Here,  the solid curves correspond to the SIF k i , i = 1,2, at the ver tex of the 

cut Xl = l, and the dashed curves correspond to the SIF ki-*, i -- 1, 2, at the vertex xl = - l .  

When the crack is located symmetrical ly with respect to the section of heating (d* = 0),  the SIF k~* acquire 

their  greatest  value at co -- 0 (the crack is parallel to the surface of the half-space) irrespective of the width of the 
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Fig. 5. Dependence  of the dimensionless SIF k~* (I) and  k~-* (II) (solid 

curves) and k~-* (I) and k2* (II) (dashed curves) on the parameter  h* in the 

case of symmetr ic  (d *=  0) heating for a*-- 1 and  w = 0 ( I ) ,  30 ~ (2), 60 ~ (3). 

+ *  
area of heat ing or the length of the cut (Fig. 2, I). The  value of the angle o) at which the SIF k 2 , which character izes  

the intensi ty of tangential  stresses at the vertex of the cut closer to the surface of the half-space,  at tains its maximum 

depends substantial ly on the width of the region of heating (Fig. 2, II). Thus ,  when the pa rame te r /*  is increased 

from 0.1 to 0.9, this angle increases from 0 to 70 ~ for a* -- 0.25 and from 0 to 45 ~ for a* -- 1.5. At w -- 90 ~ the SIF 

k 7 , i = I, 2, are  equal to zero, since then the thermally insulated crack does not per turb  the tempera ture  field. 

Asymmetry  in the mutual a r rangement  of the region of frictional heat ing and the crack leads to an increase 

in the angle of orientat ion of the crack co at which the SIF acquires its maximum value (Fig. 3, I). The  maximum 

of k~ ~ is at tained for 60 ~ < a~ < 90 ~ from 0 to 30 ~ (Fig. 3, II). 

Figure 3 also contains an important  result: for fixed parameters  a* and d*, irrespective of the dimensionless  

length of the cut /* ,  there  is an angle of orientation of the crack w -- w* at which k~* = k~* -- 0 s imultaneously.  For 

a prescribed width of the zone of heating a*, irrespective of the length of the cu t /* ,  an increase in the parameter  

d* from 0 to 2 leads to an increase in w* from 90 to 160 ~ respectively (Fig. 4). For a fixed displacement  d* the 

value of the angle w* is larger, the narrower the strip of frictional heating. 

The  effect of the distance between the center  of the cut and the surface of the half-space (the parameter  

h* = h/1)  on the SIF in the case of symmetric (d* = 0) heating is shown in Fig. 5. Approach of the cut to the free 

surface of the half-space causes a monotonic increase in the SIF. However,  very close to this surface a sharp  decrease  

in k~*, i = 1, 2, is observed for a~ = 0. A similar behavior of the SIF was noted earlier in [12 ] when a finite portion 

of the surface of the half-space was maintained at a constant temperature .  But in the problem cons idered  a finite 

portion is heated by a constant heat  flux. 

6. Conclusions.  It is found that for a prescribed power of frictional heat generat ion there  is a unique 

correspondence between the angle of orientation of the crack w -- w* at which no thermally s t ressed state  develops 

in the half-space and the parameter  d* that characterizes the distance from the center  of the section of heat ing to 

the center  of the cut. Physically this can be explained by the fact that the crack is positioned in this case in such 

a way that  its plane coincides with the isothermal surface. The  effect of the free surface of the half-space on the 

SIF at the vertices of the cut is revealed primarily in an increase in the SIF when the crack approaches the surface 

of the half-space and in a sharp decrease in the SIF for a surface cut that is par~illel to the boundary  of the 

half-space. 

N O T A T I O N  

a, half-width of the strip of heating; d, distance from the center  of the region of heat ing to the y axis; f,  

friction coefficient; h, distance from the center of the crack to the surface of the half-space; K, thermal  conductivity; 

l, half-length of the crack; p, contact pressure; q, heat-flux intensity; T, temperature;  V, slip velocity; a* --- a / h ,  

d* = d / h ,  h* = h / l ,  l* = l / h ,  dimensionless geometric parameters;  a ,  coefficient of l inear thermal  expansion;  r/, 

coefficient of separation of heat fluxes;/~, shear  modulus; v, Poisson coefficient; w, angle of or ientat ion of the crack. 
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